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Abstract

This report presents analyses of sixteen models from the Atmospheric Model Intercomparison
Project 11 (AMIP2) over the Australian region. It is focused on assessing how well surface climate
and fluxes over this region are simulated in current Atmospheric General Circulation Models
(AGCMs) forced by observed sea surface temperatures (SSTs). The importance of land-surface
modelling on model predictability is aso investigated. In this preliminary analysis, the Bureau of
Meteorology (BoM) observational rainfall, temperature and surface evapotranspiration datasets are
used in validating surface climatologies ssmulated by the 16 models. Specificaly, the Linear Error
in Probability Space (LEPS) score is calculated in assessing the skill of the models in simulating
surface climate anomalies for the 17-year period (1979 to 1995). Numerous model differences are
seen with some aspects of the model performarce being linked to the complexity of land-surface
schemes used. The connection between model skill in simulating surface climate anomalies and

surface flux anomaliesis explored.

Lag-correlation analysis is conducted. Results revea that “climatic memory” derived from land-
surface processes (e.g. soil moisture) has different features in the sixteen models. some models
show rapid feedback processes between land-surface and the overlying atmosphere, while others
show dlowly varying processes in which anomalous surface conditions have impacts on the model
integrations on longer time-scales. It is found that models with simple bucket-type scheme tend to
have a more rapid decay rate in the retention of soil moisture anomalies, and therefore, soil
moisture conditions have a much weaker influence on forecasting surface climate anomalies. This
study suggests that land-surface modelling has the potential to influence AGCM predictability on

seasonal and even longer time scales.



1. Introduction

Over the last decade, the Atmospheric Model Intercomparison Project (AMIP) has evolved as a
standard framework for evaluating state-of-art Atmospheric General Circulation Models (AGCMs)
in their simulations of current climate system. Gates et al. (1999) summarised the scientific findings
and contributions from the first phase of AMIP. Comparing model simulations with observations
and contrasting results among models have helped to identify the strengths and weaknesses in
current AGCMs and thus pinpoint areas where efforts are needed to improve the ability to simulate
the current climate and predict future climates. AMIP1 outcomes are largely achieved by the
analyses of model dynamical and physical processes through diagnostic subprojects (Gates et .,
1999). The AMIP | diagnostic subproject 12, forms part of the Project for Intercomparison of Land-
surface Parameterization Schemes (PILPS) (HendersonSellers et a., 1996), is dedicated to
evaluating AGCM simulations of surface energy and water budgets and their components, and to
assessing the role of land-surface parameterisations in AGCM simulations. As summarized by
HendersonSellers (1999), the major findings from AMIP | subproject 12 were that: (i) no “best”
land-surface simulation could be identified with every model showing unsatisfactory results in
some respect (Love and Henderson-Sellers, 1994); (ii) some models failed to conserve surface
energy and water balances, with pronounced trends in moisture stores (Love et a., 1995); and (iii)
energy and water partitioning showed larger model discrepancies than those seen in PILPS offline

intercomparisons (Irannejad et al., 1995; Qu and Henderson Sellers, 1998).

Assessing the role of land-surface parameterisations in AGCM simulations remains a key area in

weather and climate nodelling (e.g., Zhang et al., 2001; 2002) and is further pursued in the AMIP



phase Il (AMIP2) experiments. Phillips et a. (2002) outlined the overall scientific plansin AMIP2
subproject 12. Like its predecessor, this is aimed to assess the degree to which model performance
in simulating land-surface climate is related to the complexity of land-surface schemes employed.
In contrast with AMIP I, there are a number of advantages of analysing AMIP2 experiments in
relation to the study of land-surface processes in global climate system. These include: (i) a greater
variety of complexity in land-surface schemes employed; (ii) better control of the model
initialisation and spin-up processes; and (iii) more variable outputs which help to characterize land-
surface processes. In a pilot study of this AMIP2 diagnostic subproject, Phillips et al. (2000)
proposed some scientific approaches for the exploration of spatio-temporal variability of land-

surface smulations from AMIP2.

This study is focused on assessing the performance of AMIP2 models over the Australian region
(see eg. Figure 2). There are two man goals. (a) to deliver an evaluation of current AGCMs
simulations of observed climate over this region; and (b) to try to establish whether, and
potentially, how, land-surface processes and parameterisations affect the model predictability of
climate anomalies on seasonal and longer time scales (e.g., Zhang and Frederiksen, 2001). As a
first step, the focus of the preliminary analysis is centred on three questions (i) how different the
models are in simulating key surface climate variables such as precipitation and surface
temperature; (ii) how different the models are in simulating land-surface fluxes (latent and sensible
heat fluxes); and (iii) whether there is any connection between the model skill in smulating surface

flux anomalies and in predicting surface climate anomalies.



There are sound scientific reasons for proposing that land-surface modelling could affect model
predictability. Primarily, different representation of land-surface processes may affect the time
scale of feedbacks between the land-surface and the atmosphere. For example, considering how soil
moisture is simulated in GCMs, three main characterisations can be identified. In a one-layer
bucket-type model (e.g., Manabe, 1969), soil moisture is governed by

Y P E-R-D 1)
dt

where H is soil depth, D is water density, w is volumetric soil water content, P is precipitation, E is
surface evaporation, Ris surface runoff and D is drainage term. In this type of parameterisation, the
occurrence of runoff is determined by whether soil moisture is above a critical value (field
capacity). No runoff is simulated until the whole volumetric soil is saturated. At the same time,
there is a direct feedback between evaporation and soil moisture with no hydraulic diffusion
process controlling the water movement inside soil. In this regard, the bucket-type soil hydrological
model tends to simulate a rapid response of bare soil wetness to changes in atmospheric forcing.
Meanwhile, Scott et al. (1997) found that in regions with dense canopy coverage, bucket models
showed relatively slow response of evapotranspiration to precipitation forcing as there is a lack of
canopy interception component in such models to reflect the rapid canopy transpiration of

intercepted water.

An intermediate scheme in soil moisture ssimulation is the so-called rce-restore model in which

there isathin top layer and a deep soil layer. Soil moisture in these two layersis governed by
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where w; and w, are the soil moisture in the upper and deep layers. d; and d, are the depths of these
two soil layers, Eq and Ey represent ground evaporation and canopy transpiration, Wge is the soil
moisture when gravity force balances soil capillarity force, and J is the force-restore time scale. In
this scheme, two different time scales are involved in representing the feedbacks between land and
the atmosphere: there is a rapid response to the atmospheric forcing in the top thin layer and a slow
restore process in the deep layer by soil moisture supply from deep soil to the upper layer for
surface evaporation. Surface runoff occurs when the upper layer is saturated even though the deep
layer may still be unsaturated and a contribution from canopy transpiration is included in the total

evapotranspiration.

The opposite extreme from the “bucket” is a multi-layer soil model. This type of scheme has been
developed to fully couple soil hydraulic diffusion processes with canopy and root- zone processes of

water flow in the soil.
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where 2 is soil water content, g is Darcian soil water flux density and S is a sink term which
includes root water uptake affected by root density and distribution, canopy transpiration and in

some schemes even horizontal runoff.

Comparing the three approaches to ssmulating soil moisture in GCMs, it is clear that different
complexities in the land-surface parameterisation may affect model predictability. For instance,

considering how soil moisture responses to meteorological forcing with bare soil surface condition:



In single-layer bucket-type models. volumetric soil moisture depletes (fills) immediately
when evaporation (precipitation) occurs. This leads to a rapid response from the land-
surface to any atmospheric forcing and a short “memory” of soil moisture in the climate

system and, ultimately, a less predictable land-surface component in the overall model.

In force-restore and multi- layer scheme: deep soil water depletes (fills) by first diffusing
through upper-layer and then evaporation from (after precipitation onto) surface. This leads
to slower restoring responses within the soil layers, and thus to alonger “memory” of land-
surface processes in the climate system, ultimately to a more predictable component in the

overal moddl.

In recent years, there have been a number of studies focused on assessing the degree to which land-
surface parameterisations can affect the predictability of climate models. Koster and Suarez (1996)
investigated the influence of soil moisture retention on precipitation statistics. Scott et a. (1997)
studied the timescales of land-surface evapotranspiration responses in the land-ar feedback
processes. Recently, Koster and Suarez (2001) reported on a study of soil moisture memory in
climate models by constructing a soil moisture auto-correlation equation with components
representing the nonstationary effects of atmospheric forcing, evaporation, runoff, and the
correlation of atmospheric forcing with soil moisture condition. As AMIP2 models use a wide
range of land-surface parameterisations, analysing results from AMIP2 simulations may offer some

insight to understanding the relationships among physical processes parameterised.



This report presents preliminary analysis of sixteen AMIP2 model experiments. As a first step
towards understanding the impacts of land-surface modelling on GCM simulations, the current
report serves primarily to demonstrate differences among model ssimulations. The explanation of
these differences is currently under intensive research and will be reported later. This report is
structured as follows:. Section 2 describes the AMIP2 models in this study and particularly the land-
surface components in these models. In addition, validation datasets used in this analysis are
introduced here. The skill of the models in smulating surface climatologies is described in Section
3. Section 4 presents the model skill in simulating the variations of surface climate and fluxes.
Section 5 explores connections between model skill in simulating climate and surface flux
anomalies. The results of lag correlation analyses are presented in Section 6 to initiate examination
of whether land-surface parameterisations in GCMs affect model predictability. Finally, discussions

and preliminary conclusions from the current analysis are presented in Section 7.

2. Modelsand Validation Data Used in the Analysis

Seventeertyear (1979-1995) AMIP2 simulations from sixteen AGCMs have been released at the
time of this report. Table 1 lists the models used in the study, which include well-known research
institutes and organisations. However, the models will remain anonymous in the rest of the
analysis. Table 2 summarises some key aspects of the model configurations which are directly
related to the focus of this study. It should be emphasised here that the purpose of this study is not
to identify the best model(s), rather it is dedicated to improving understanding of model
performance following the model physics. As shown in Table 2, there is a great variety of land-

surface complexities in these models, ranging from simple Manabe-type bucket models with no



canopy related processes, intermediate bucket plus simple canopy stomatal resistance schemes, and
finally, schemes with fully parameterised canopy processes and incorporated carbon-cycles. The
soil hydrology component varies from the simple one-layer bucket scheme, through two-layer
force-restore approaches to multi-layer soil schemes. Such diversity in complexity in land-surface
schemes provides a good opportunity to study the role of land-surface parameterisation in climate

simulations.

As noted by Phillips et a. (2000), the lack of high quality and globally consistent continental-scale
observations of land-surface variables, such as surface heat fluxes, soil moisture and runoff,
hampers the evaluation of GCM model performance. This study uses available observational
datasets and model-derived reanalysis datasets while recognising the deficiencies in both types of
validation data (e.g., Iranngad, et al., 2001). The Australian Bureau of Meteorology (BoM)
observed rainfall and temperature datasets are employed for validation of model simulated surface
climate. These latter data, originally formed on 0.25° by 0.25° grids, have been transformed to the
common T62 grids to which al the sixteen AMIP2 models have been regridded. The BoM
evapotranspiration climatology (Wang et a., 2001) is used in the evaluation of surface evaporation
simulations. These data have been derived using the formulation of Morton (1983) and observed
meteorological forcing (precipitation, temperature, radiation etc.), together with observed river
discharge and observed precipitationin the calibration designed to conserve surface water balance.

The NCEP/DOE AMIP2 reanalysis (ht t p: / / wesl ey. wwb. noaa. gov/ r eanal ysi s2/) for

the period of 1979 to 1995 is also used in later part of the study which examines the correlation
between model skill in simulating surface climate anomalies and skill in simulating surface flux

anomalies.



Besides the calculation of standard measurements, such as root- mean-square-error (RMSE), biases
and spatial and temporal correlations between model results and observations, Linear Error in
Probability Space (LEPS) skill score (Potts et al., 1996) is adso used in this study. This score is
related to the difference between the position of the simulation and the observation in the
cumulative probability distribution space of the particular climate variable under consideration.
This skill score has been used in the verification of the BoM statistical seasonal forecasting system
(e.g., Jones, 1998; Drosdowsky and Chambers, 2001) and in the assessment of the BMRC

experimental AGCM seasonal forecasts (Frederiksen et al., 2001).

For individual smulations, if the position of the simulation in the cumulative distribution in the
modd is P, (ranging from 0.0 — 1.0) and that of the observation is P,, then the LEPS skill score
(Potts et al., 1996) is defined to be

S=JL|P - RFR *- R +R*-R)-1. (5)
To achieve a skill score range from 100% to —100%, average skill (SK) may be defined (Potts et

a., 1996) as

[¢]

a 100S
K=—7 . (6)
Here the summation is over al pairs of smulations and observations, where S is the individual
score for each forecast, and S, depends on whether the numerator is positive or negative. For a

positive numerator, S. is the sum of the maximum possible scores given the observations

(obtained by setting P, = R, in Equation 5. If the numerator is negative, S, is the sum of the

\

moduli of the worst possible scores given the observations, obtained by setting either B, =10 or
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P, =0.0 in Equation 5 and taking the negative value with the largest modulus. As shown by Potts

et a. (1996), the relationship between LEPS score and correlation coefficient is nonlinear, which is
a function of standard deviation of model simulations: a LEPS score of zero corresponding to zero

correlation and a LEPS score of 30% roughly corresponding to a correlation coefficient of 0.5.

Considering that there likely are to be large differences between the cumulative probability
distribution derived from the model simulations and the observations, we calculate P and Py, using
the model-simulated cumulative probability distribution (derived from the model 17-year AMIP2
integration) and observed cumulative probability distribution (derived from 50-year observations
from 1950 to 1999), respectively. This is different from Frederiksen et a (2001) in which both
model simulations and observations are referred to observed cumulative probability distributions.
As discussed in Potts et al. (996), the approach used in this study is more appropriate for

estimating the potential predictability in the models.

3. Surface climatologies of sixteen AMIP2 models

At first, we briefly discuss some fundamental features of observed surface climatologies over the
Australian region. These climatologies will then be used in evaluating model simulated
climatologies. Figure 1 shows the surface climatologies using the BoM’s observational datasets.
Rainfall, monthly mean dailly maximum surface temperature (Tmax) and monthly mean daily
minimum surface temperature (Tmin) climatologies are the averages over the period of 1950 to
1999, while surface evaporation climatology is from Wang et al. (2001). Figures 1(a) and (b)

display significant seasonal variations of rainfall distributions in DJF and JJA. In the austra
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summer, the Australian monsoon produces heavy rainfall over the northern and eastern part of the
continent. Precipitation is low in the central, western and southern regions. In JJA, large rainfdl is
observed in the southern and western parts of the region, and precipitation is low in the central and
north. Both Tmax and Tmin exhibit significant shifts seasonaly following the sun, and it is
generally cooler in the south and warmer in the north and central regions. Surface evaporation
climatologies in DJF and JJA demonstrate a dry feature of the continent, with low surface
evapotranspiration over a large part of the continent in both seasons. Surface evaporation exceeding
80 Wmi? only occurs over the northern and eastern parts of the continent in the summer monsoon

rainy season.

Figure 2 shows the biases of seasonally averaged precipitation climatologies from the sixteen
AMIP2 models against the observed climatology for the period 1950 to 1999 from the BoM data.
In the austral summer season (DJF), about half of the models overestimate the rainfall climatology
over a large part of the continent, with models B, F, N and P having greater than 50 mm month*
positive biases over a large part of the continent. Models A and D have systematic negative biases
over the whole continent. In JJA, precipitation biases are much weaker in most of the models
compared with DJF. Except for models E, M and O, most of the models show positive biases in the

eastern part of the continent and most models exhibit negative biases in the south.

The area-averaged root-mean square-error (RMSE) of the model climatologies over the continent is
shown in Figure 3. Simulations from a “poor-mans ensemble’, generated by simply averaging all
the model simulations throughout the 17-year period as a set of new simulations, are aso included

for comparison. In agreement with results from Figure 2, RMSE is generaly higher in the austral



summer season, with model P being the significant outlier. As found by Ebert (2001) and Love et
al. (1995), such asimple averaging all the model simulations (poor-man’s ensembles) gives the best

overal RMSE results.

Despite the large biases seen in Figure 2, the spatial pattern of rainfall climatology and its seasonal
migration associated with the Australian monsoon system are reasonably well ssmulated by most of
the AMIP2 models (Figure 4). The spatial correlations with observed rainfall climatology are
around 0.8 for most models in the summer season, but the correlation drops to about 0.6 in the
austral winter season. Of the sixteen models, C and P have the largest seasona variations of the
gpatial correlation, with models C and P giving the poorest simulation of winter rainfall

distribution.

Climatological biases of monthly averaged daily maximum surface temperature (Tmax) between
model simulations and the BoM observations are shown in Figure 5. In the austral summer season
(Figure 5a), the bias can be as large as 5 to 10 °C. Most models underestimate the daily Tmax in the
northern and eastern parts of Australia with models F, G, N, O and P having negative biases of
above 5 °C. Most models also tend to overestimate Tmax in the southern part of the continent by 2
to 5 °C. In contrast, models A, H and M show systematic positive biases over the whole continent
and models G and O have systematic negative biases. In the austral winter (Figure 5b), most
models tend to underestimate Tmax except models A, B, E, H and M, which have positive biases
over much of the cortinent. Models F, G, N and O have systematic negative biases over ailmost the

whole continent, with the largest biases seen in Model O of 5 to 10 °C. Referring to Table 2, results
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suggest that models with a lower number of levelsin soil temperature calculations than the average

are likely to be part of the outliers.

Area-averaged RMSE in Figure 6 demonstrate that the models have relatively low errors in the
winter Tmax simulations and, again, the poor-man ensembles outperform most models. Figure 6
shows that models H and O have larger RMSE than the others, with a large seasonal feature in
model H. In contrast to the results seen in RMSE, results of spatial correlations with observed
Tmax climatology (Figure 7) show that the pattern of Tmax distribution in most models are similar
to the observed, particularly in the winter season. There are large model discrepancies in the results
from October to March, with models H, N, O and P showing lower skill. Together the results in
Figures 5 to 7, tends to suggest that models O and P (with one-layer bucket type land-surface
schemes) exhibit poorer performance in the simulation of Tmax climatology than the others. The
poor performance of model H is also consistent with the relatively low number of soil layersin its

calculations of surface energy balance (ref. Table 2).

Figure 8 shows the climatological biases between model simulated and observed daily minimum
surface temperature (Tmin) in DJF and JJA. In DJF, some models (e.g. A, D, F, J and M) show
smilar features to their Tmax simulations while others exhibit many differences. For instance,
models G, H and K show almost opposite biases from those in Tmax. Model H has positive biases
in Tmax and negative biases in Tmin, resulting in significant overestimation of daily temperature
variation in DJF (Figure 114). In contrast, models G and O have lower Tmax and higher Tmin,
leading to the underestimation of daily temperature variations in this season. Except for some

outliers, results from daily temperature range (Tmax-Tmin) in Figure 11a suggest that the biases of
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surface temperature daily range are between 2 to 5 °C, smaller than the biases in Tmax and Tmin

individually.

Similar results are seen in Tmin simulations in JJA with models G, H and O showing biases
opposite to those in Tmax. Consequently, the daily temperature range is poorly simulated in these
models (Figure 11b). Arearaveraged RMSE (Figure 9) shows that models B, G, H and N have
larger errors than most of the others in smulating Tmin climatology. However, modelsC, L, N, O
and P generate relatively poorer simulations of the spatial distributions of Tmin in Australian
region (Figure 10). Combining results from Figures 5 and 11, it seems that models O and P (with
one-layer formula for the surface energy balance), together with models having lower number of
layers in calculating surface temperature (e.g., models G and H), are more likely poorer at
simulating the Tmax and Tmin climatological distributions in the season from October to March. In

addition, models C and L exhibit different capability in Tmax and Tmin simulations.

Using the BoM evapotranspiration climatology data from Wang et al. (2001), the sixteen AMIP2
model-simulated surface evaporation climatologies are evaluated in Figures 12 to 14. In DJF, there
are quite large differences among the model simulations, with most models showing 20 to 50 W2
biases over the continent. Models A, D, | and M have large negative biases over much of the
continent, while, B, F, N and P show systematic positive biases in DJF. In addition, the majority of
the models underestimate surface evaporation over the central-western dry region. Comparing these
conclusions with the Tmax results in Figure 5a, tends to suggest that when surface evaporation is
underestimated, the nodels have positive biases in Tmax simulations and vice versa. However,

some models do exhibit different features. For instance, model B overestimates evaporation over
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much of the continent but it shows negative biases over the north. Similarly, model H has positive
biases over the whole continent in Tmax simulations but underestimates surface evaporation in the
north. Similarly, the relationship between evaporation and Tmin simulations varies with models.
There is no obvious coherence between the biases in surface evaporation simulation and Tmax and

Tmin simulations, and some models show closer linkage than others.

In JJA, the biases simulated in most models tend to be weaker than in DJF, a feature also seen in
the area-averaged RMSE in Figure 13. For instance, models B, F and N show much weaker
positive biases in the simulations of winter surface evaporation climatology. Large biases in the
coastal region in models K and L occur in both JJA and DJF. Such biases contribute to the large
RMSE results in Figure 13. In addition, model P exhibits large RMSEs in most of the months
except in the winter season. The pattern of evaporation climatology is reasonably reproduced by a
large number of models (Figure 14), with higher correlation in the summer than in winter season.
However, there are also a number of models, in particular, models K, L, M and P, which have low

skill in simulating the spatial distribution of surface evaporation.

Overdl, in this section, the performance of sixteen AMIP2 models in simulating surface
climatology over the Australian region has been evaluated by the calculation of climatological
biases, RMSE and spatia correlations. In the following section, the mode skill in simulating

climate variations over thisregion is assessed.
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4. Results of the AMIP2 modelsin simulating surface climate anomalies

One of the purposes of this study is to assess the predictability of climate anomalies over this
region. To this end, the skill of each model in simulating monthly precipitation and Tmax and Tmin

anomalies for the 17-year AMIP period is presented here.

Figure 15 shows the model skill in simulating monthly precipitation anomalies against the BoM
observational data. Model simulated anomalies are relative to the 17-year climatology from the
model simulations. Also, the cumulative probability distribution of such anomalies derived from
each model is used in the LEPS calculations, together with the distribution derived from the
observations. As shown in Figure 15a, most of the models exhibit rather limited skill in simulating
rainfall anomaliesin DJF. There is also no coherence about regions where most models have (or do
not have) skill. The majority of the models do not show skill in simulating rainfall variations in the
north and northeast where the Australian summer monsoon dominates. Part of the skill seen in the
central region may be due to the consistently dry climate here. In the austral winter season (JJA),
the modd skill in ssimulating rainfall anomalies is better than that in DJF. This is particularly clear
in models B, D, F and M. Area-averaged LEPS score (not shown) aso suggest more skill in the
winter season, as do statistical seasona forecasting systems (e.g., Drosdowsky and Chambers,
2001). In this season, models D, F and M outperform most others in simulating winter rainfall

variations.

17



Even though there is little or no coherence in the model LEPS score of Tmax simulations, the
gpatial distribution of each model’s LEPS score is much smoother (Figure 16) than the model skill
for rainfall variations. The BoM dtatistical seasonal forecasting system (e.g., Jones, 1998) has
reasonable skill in Tmax forecasting over the eastern part of the continent in DJF, but this is not
commonly seen in the AMIP2 model ssmulations (Figure 16a), of which only half of the models (A,
E, G, J L, M and N) show skill in this region. The model skill is moderately improved in JJA
(Figure 16b) with models A, D, F, and M exhibiting reasonable skill over much of the continent.
This is in agreement with the BoM statistical model, which also shows skill over extensive areas of

the continent in JJA (Jones, 1998).

In the summer season (DJF), results from Figure 17a show that the skill of most of the models in
smulating Tmin variations has broadly smilar features to those seen in Tmax. These similarities
are not retained in the winter season (Figure 17b). For instance, models A and F have skill in Tmax
simulations in the eastern part of the continent, while rather poor model skill is seen in the Tmin
simulations for the same region. Such differences are, to some extent, also found in the skill of
statistical models in forecasting Tmax and Tmin anomalies over the Australian region (Jones,

1998).

As there are no multiyear surface evaporation data available, only the climatology used in Section
3, we cannot calculate the LEPS score of each model in simulating surface evaporation variation
over the Australian region. However, in the next section, such skill will be assessed by comparison

with the NCAR/DOE rearalysis datasets.

18



5. Linkage between model skill in ssmulating anomalies of surface climate and fluxes

In Section 4, we have assessed of the performance of the AMIP2 models over the Australian region
in terms of the model skill in simulating surface climate variations from the model 17-yr
integrations. We next examine whether the skill of the models in simulating surface climate is
linked to the skill of the models in ssimulating surface fluxes. If meteorological forcing, such as
radiation, rainfall, temperature etc, is the dominant factor in the model simulation of surface fluxes,
then good correlations between the LEPS score of surface climate and LEPS of surface fluxes in
the model simulations would be expected. In contrast, low correlations would sugges that
differences in complexity and approach used in representing the land-surface processes are

important for air-land interaction simulations.

As there are no multi-year observed surface flux datasets available, the 17-yr NCAR/DOE
reanalysis is employed in calculating the LEPS score of each model’s surface latent and sensible
heat fluxes. To be consistent, each model’s LEPS score in rainfal and surface temperature
simulations is re-calculated by using the same reanalysis data. Correlations of the LEPS scores of
the models in ssimulating surface climate anomalies (temperature, precipitation and soil moisture)
and surface flux anomalies (latent and sensible heat fluxes) are also analysed. It should be noted
that there are deficiencies in the reanalysis data (e.g., Iranngad et a., 2001) and that there are
incompatibilities of some fields (e.g., total soil moisture) between models and reanalysis. However,
as emphasis is on the connections between the LEPS scores rather than on the LEPS scores
themselves, use of the reanalysis data for this part of calculation is reasonable (even though not

desirable). In addition, applying both the cumulative probability distributions derived from model
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simulations and from the reanalysis data in the LEPS calculations further alleviates the impacts of

the deficiencies in the reanalysis dataset on this part of the study.

Figure 18a shows the correlation of LEPS scores in the model simulations of precipitation
anomalies and surface evaporation anomalies over the 17-yr AMIP2 period for the 16 AGCMs. The
averaged correlation coefficient (heavy dashed line) is about 0.3 to 0.6, with large variations
between models. Figure 18a suggests that the connection between these two skills in model
simulation is more pronounced in the austral summer season. This feature is clearer in the results
from the poor-man ensembles (heavy solid line). To illustrate this feature further, Figure 19
presents scatter plots of rainfall and surface evaporation LEPS scores over the Australian region
from one of the models. In the summer season, correlation between the two LEPS scores can be
seen. When the model LEPS score for simulating the precipitation anomaliesis high, therealsoisa

high LEPS score in simulating surface evaporation anomalies.

As AMIP2 results are from experiments that include complex coupled land-atmosphere
interactions, it is difficult to identify cause and effect relationships. For example, does a good
simulation of precipitation lead to more skilful simulation of surface evaporation or, does
successful representation of surface evaporation (capturing surface water recycling) contribute to
the model skill in rainfall simulations? Detailed, process analysis (to be reported separately)
suggests that during the summer season, surface radiative forcing is sufficient in this region and as
a consequence, surface water availability constrains the surface evaporation processes in most
models. Therefore, it is reasonable to attribute higher LEPS score in a given model surface

evaporation simulation to skilful simulation of precipitation anomalies. In contrast, during the
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austral winter (Figure 19b), there is virtually no correlation between the skill of the model in
simulating rainfall anomalies and skill in simulating surface evaporation anomalies. Thus, even if a
model has reasonable skill in smulating rainfall anomalies, this does not deliver skill in simulating
surface evaporation anomalies. These results suggest thet in the winter, surface flux simulations are
not dominated by the meteorological forcing smulated in the model. Model representation of
surface energy and water partitions plays a significant role in simulating the variation of surface
fluxes in this season. It should be pointed out that such relationships seen over the Australian
continent might be different from results in other regions with different climates. This will be

studied by further analysis of model results over different regions in the future.

In contrast to the relationships seen in Figure 18a, the model skill in simulating soil moisture
anomalies derived from the reanalysis data is only loosely correlated with precipitation anomalies
from the reanalysis (Figure 18b). As discussed before, soil moisture in the reanalysis may be quite
different from the models. Nevertheless, our interest here is not on the model skill of reproducing
the soil moisture variations in the reanalysis, but on the connection between LEPS scores in rainfall
and soil moisture simulations. The scatter among the models in Figure 18b is aso larger than seen
in Figure 18a. These results suggest that variations of soil moisture in the models are not solely
determined by rainfall simulations. Rather, soil moisture seems to be determined by surface
hydrological process parameterisation in the models. In addition, results here indicate that
improvement and widened application of numerical model forecasts of climate anomalies will
require better treatment of hydrological processes in models. For instance, soil moisture conditions
are more important for agriculture than rainfall anomalies and, it seems, forecasts of rainfall

anomalies do not necessarily provide any indication of soil wetness.
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6. Potential impacts of land-surface modelling on model predictability

As discussed in the introduction, this study is, in part, dedicated to investigating the potential
impacts of land-surface modelling on GCM predictability. A number of studies have reported
recently on thistopic (e.g., Koster and Suarez 1996; Scott et al. 1997; and Koster and Suarez 2001).
Here, a preiminary anaysis of the impacts of land-surface modelling on model predictability by
lag-correlation calculations is presented. The sasonal cycle s removed before the calculation of
lag-correlation between two variables. With 204 samples from the 17-yr model integrations used in
the calculation, a correlation coefficient exceeding about 0.14 is statistically significant with 95%
confidence (assuming the samples are independent). Lag correlations up to twelve months are

calculated in this study.

Figure 20 shows the three-month lagcorrelation between soil moisture (mrso) and surface
evaporation (hfls) over the Australian region, with surface evaporation lagging soil moisture. A
three- month lag is chosen here as this is the timescale reported by most AGCM seasonal forecasts
(Frederiksen et a., 2001). There are remarkable differences among AMIP2 models in terms of the
timescale over which soil moisture anomalies affect surface energy partitions. Lag correlations
between these two variables are, overall, positive over the continent, except for model C which has
negative correlations over part of the region. Among the 16 models, it is noted that models O and P,
together with models C, M and N, exhibit the lowest overal lag correlations. As will be shown later
(ref. Figure 25), such results from models O and P are directly due to the short retention period of
soil moisture anomalies in the land-surface schemes used in the models with a bucket-type

structure.



The three- month lag correlations between soil moisture and precipitation anomalies (not shown) are
substantially lower than the results seen in Figure 20. There is no significant correlation in any of
the 16 AMIP2 models considering a three-month lag. This is chiefly the result of other processes
affecting the ssimulation of precipitation in these AGCMs. However, soil moisture anomalies do
affect surface temperature forecasts. Figure 21 shows that with a three-month lag, anomalous soil
moisture conditions are linked to the forecasts of surface temperature anomalies in a number of
models, particularly over the eastern part of the continent. Among the 16 models, models A, G and
K have the largest area of significant correlations and, again, models O and P with a bucket-type

land-surface scheme, aswell as C, L and N, show |lowest lag correlations.

The characteristic feature, exhibited by models O and P, can be largely explained by the short
retention time for soil moisture anomalies when simulated by simple bucket-type surface schemes.
Figure 22 displays the auto-correlation of soil moisture anomalies across all the AMIP2 models.
Clearly, models O and P have the lowest auto-correlation on this time scale. Combining results
from Figures 20 to 22, it is possible to draw two complementary conclusions: (i) in models with a
smple one-layer bucket land-surface scheme, the retention of soil moisture anomalies is much
shorter than others, resulting in a weak influence from land-surface conditions on the model
predictability on a seasonal time scale; (ii) predictability in GCM models is also affected by factors
other than the contribution from land-surface processes. For instance, model C shows high auto-
correlation of soil moisture anomalies in Figure 22, but it has consistently lower lag correlations in

Figures 20 and 21, implying other factors in the model are contributing to this model’s low
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predictability. Jointly, these results prompt the need for further research in an effort to more fully

understand the mechanisms involved.

To further illustrate the differences among simulations of soil moisture variations ssimulated in the
AMIP2 models, Figure 23 shows the soil moisture anomalies from three models (D, J and O) after
the removal of their simulated seasonal cycles. Results from the grid point located near 25°S and
135°E are analysed here. These three models have been selected to encompass the range of
simulated characteristics of interest in this diagnostic subproject. Model D represents models
having high soil moisture auto-correlations, model J is typica of models with modest auto-
correlations, and model O illustrates results from models with much lower auto-correlations, as

seen in Figure 22.

These distinguishing features are clearly shown in Figure 23. Model D exhibits a dow variation of
soil moisture anomalies and it also shows a slow downward trend simulated in soil water which
contributes to the large auto-correlations. Model J shows moderate variations of soil moisture
conditions at this location, while model O with a bucket-type scheme exhibits rapid responses to
the meteorological forcing, with soil moisture anomalies responding rapidly to rainfall anomalies
and evaporative demand (not shown). Thus, for this model, an anomalous wet condition decays

rapidly over a short time scale.

To illustrae the time scale of soil moisture processes simulated by each of the models, Figure 24

shows areally-averaged lag correlations from zero to twelve months lag. Results are area-averages

over the Australian continent. Figure 24a shows large differences in models lag correlations
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between soil moisture and evaporation. Some AMIP2 models show averaged correlations
exceeding 0.15 up to five and six months lag, while others exhibit low correlations within a month.
These differences are even more pronounced in the correlations between soil moisture and surface

temperature (Figure 24b).

The rapid decaying of correlations in models O and P seen in Figure 24 is consistent with the
features of soil moisture anomalies simulated and already described for these two models (Figure
25). Figure 25 demonstrates the remarkably different characteristics of soil moisture variations
simulated in these two models as compared with the other AMIP2 models. These two models have
the fastest decaying rates of soil moisture auto-correlations, underlining the short retention time of
soil moisture anomalies and subsequently other surface climate anomalies. For example, Figure 25b
shows that the retention of surface temperature anomalies in models O and P is shorter than for

most other models examined here.

Overdl, the lag and auto-correlation analysis of AMIP2 models clearly shows the potential of land-
surface schemes to influence model-simulated characteristics of surface climate anomalies. The
impacts of different complexity of land-surface modelling on the model predictability have also
been illustrated, particularly by comparing the behaviours of AGCMs coupled to the simplest
(bucket-type) land-surface scheme with the performance of models incorporating more complex

surface representations.
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7. Discussion and Conclusions

This report has presented the results of analysing 16 AMIP2 models over the Australian region. The
study has focused on assessing the surface climate and surface fluxes simulations in the current
AGCMs forced by observed SSTs and sea-ice. The goals have been (i) to explore the impacts of
land-surface modelling on the skill of surface climate simulations and (ii) to evaluate the potential

of land-surface complexity to affect model predictability.

In this preliminary analysis, Australian Bureau of Meteorology (BoM) observational rainfall,
temperature and surface evapotranspiration datasets have been employed to evaluate the surface
climatologies simulated by the 16 models. The Linear Error in Probability Space (LEPS) score has
been used to assess the skill of the models in simulating surface climate anomalies for the 17-year
AMIP2 period (1979 to 1995). This study has quantified the skill of the model simulations using
the measurements including biases, rmse and spatia correlations. A range of model differences
have been described and linked to the complexity in the model’s land-surface schemes. For
instance, results tend to suggest that models using a small number of soil layers (1 or 2) in the
calculation of surface energy balance generate poorer simulations of Tmax and Tmin over the
region than those with more soil layers. The connection between model skill in smulating surface
climate anomalies and surface flux anomalies has been explored. It is found thet in the austral
summer, the skill of models in simulating precipitation anomalies is correlated to their skill in
simulating flux anomalies. However, these correlations become weaker in the winter season,

implying that the influence of land-surface modelling is more significant then.
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Lagcorrelation analysis has reveadled that the characteristics of climatic “memory” from land-
surface processes (e.g. soil moisture) differ among the sixteen models: some models show rapid
feedback processes between the bBnd-surface and the overlying atmosphere, while others exhibit
dowly varying processes in which anomalous surface conditions have influences over longer time
periods. It was found that models with simple bucket-type schemes tend to show rapid decay rates
in soil moisture anomalies, leading to much weaker lag correlations between soil moisture
conditions and surface climate anomalies. Overal, this analysis suggests that land-surface
modelling has the potential to affect AGCM predictability on seasonal and even longer time scales.

This impact on the predictability skill isitself afunction of the land-surface scheme characteristics.

It should be noted that the current study is only a first step towards a better understanding of the
role of land-surface modelling in climate ssmulations. This report has quantified model skill and
explored differences among models and discrepancies between simulations and observations.
Ongoing research will continue to try to determine why the models are different, and to what extent
different mode performances can be linked to the complexity of their land-surface representations.
More detailed analyses such as those reported in Koster and Milly (1997), Gedney et a. (2000) and
Koster and Suarez (2001) will be pursued in the future. With the continuing release of AMIP2
model results, including those from the BMRC Atmospheric Moddl (BAM) AMIP2 experiments,

analysis will become more inclusive and more geographically extensive.
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Table Legend:

Table 1: Models used in the analysis

M odel

CCCMA

CCSR

CNRM

DNM

ECMWF

GLA

JMA

MRI

NCAR

NCEP

PNNL

SUNYA

UGAMP

uluC

UKMO

YONU

Full name

Canadian Centre for Climate Modelling and Analysis
Center for Climate System Research

Centre National de Recherches Meteorol ogiques
Department of Numerical Mathematics

European Centre for Medium- Range Weather Forecasts
Goddard Laboratory for Atmospheres

Japan Meteorological Agency

Meteorological Research Institute

National Center for Atmospheric Research

National Centersfor Environmental Prediction

Pacific Northwest National Laboratory

State University of New York at Albany

The UK Universities Global Atmospheric Modelling Programme
University of Illinois at Urbana-Champaign

United Kingdom Meteorological Office

Yonsa University

Country
Canada
Japan
France
Russia
UK
USA
Japan
Japan
USA
USA
USA
USA
UK
USA
UK

Korea




Table 2. Model codes and features of the sixteen AMIP2 models analysed in this report.

Code | Resolution L and-surface components No. of layers in | No.of layersin
Soil mode Canopy representation soil temperature | soil moisture
complexity calculations calculations

A T42L.18 bucket const. canopy resistance 3 1

B T63L45 force-restore intercept. + transpiration 2 2

c 4x51L21 multi-layer diffusion | intercept. + transpiration 24 24

D T159L50 multi-layer diffusion | intercept. + transpiration 4 4

E T63L30 multi-layer diffusion | intercept. + transpiration 4 3

F T42L18 multi-layer diffusion | intercept.+ transpiration +CO, 6 6

G T62L18 multi-layer diffusion | intercept. + transpiration 3 2

H T42L18 multi-layer diffusion | intercept. + transpiration 2 3

' 2.5x3.75 L58 | multi-layer diffusion | intercept.+ transpiration +CO, 4 4

J 2.5x3.75L19 | multi-layer diffusion | intercept.+ transpiration +CO, 4 4

K T47L32 multi-layer diffusion | intercept. + transpiration 3 3

L 4x5L20 multi-layer diffusion | intercept. + transpiration 2 3

M T42L.30 multi-layer diffusion | intercept. + transpiration 3 3

N T42L18 multi-layer diffusion | intercept.+ transpiration +CO, 6 6

© 4x5 124 bucket no 1 1

P 45 L15 bucket no 1 1




Figure Legend

Figure 1: Observed surface climatology over the Australian region from the BoM’s observational
datasets. (a) Precipitation climatology (mm month?) in DJF for the period of 1950-1999; (b) as (a)
but for JJA; (c) Monthly mean daily maximum surface temperature climatology (°C) in DJF for the
period of 1950-1999; (d) as (c) but for JJA; (e) Monthly mean daily minimum surface temperature
climatology (°C) in DJF for the period of 1950-1999; (f) as (e) but for JJA; (g) Surface
evapotranspiration climatology (W mi?) in DJF from the datasets of Wang et a. (2001); (h) as (g)
but for JJA.

{a) Prec DJF iey Prec Jda T
il & {tann S S ' rn
! / L1

BB § B
RN

[h] Ewvp Jua
- %

e [ e rE W 1= [ e [
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Figure 2: Climatological biases of precipitation simulated by 16 AMIP2 models against the BoM
observations (mm month?).
(a) DJF,;

Figura Z(a) Preaipitation blos In DJF. Unit mm,/month.
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2(b) JUA.

Figue 2{b)} Prediploifon blos in JlA Unth mm/mosth



Figure 3. Root-mean-sguare-error (rmse) of precipitation climatology simulated by 16 AMIP2
models against the BoM observations (mm month?) over the Australian region. The heavy dasted
line represents the averaged rmse of al the 16 models. The heavy solid line represents the rmse of
results from poor- man ensembles of the 16 models.
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Figure 4. Spatial correlations of precipitation climatology simulated by 16 AMIP2 models against
the BoM observations (mm montht) over the Australian region. The heavy dashed line represents
the averages of al the 16 models. The heavy solid line represents the results from poor-man
ensembles of the 16 models.

COR

Precipltation Climatology
{comelalion wilh BoM daia)

ensemble

a8 r
a8
Q7 r
a6
a5
04 ¢
93t
9.2
a1 r

0.1 |

_0.2 L L L L L L L L L L L L
J F M A M J J A 5 o M D

MOHNTH

Figure 4: Spatial corrlationz of prcipitation climatology egaimet the Boll o bee rvations {mmimath).



Figure 5: As Figure 2 but for monthly mean daily maximum surface temperature (K).
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Figure 6: As Figure 3 but for monthly mean daily maximum surface temperature (K).

Tmax Climatology
{mise wilh BoM dala)

ensemble

14 +

-=- average

12

10

RMSE (K)

MONTH

Figure G Reot-mean—-ejoar—ermor{ moze) of Tmax climaalogy agairet the Eobl obee ovations (1),



Figure 7: As Figure 4 but for monthly mean daily maximum surface temperature (K).
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Figure 8: As Figure 2 but for monthly mean daily minimum surface temperature (K).
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Figure 9: As Figure 3 but for monthly mean daily minimum surface temperature (K).
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Figure 10: As Figure 4 but for monthly mean daily minimum surface temperature (K).
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Figure 11: AsFigure 2 but for surface temperature daily range as the difference between Tmax and
Tmin (K).
(a) DJF,;
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Figure 12: As Figure 2 but for surface latent heat flux (W mi?).

(a) DJF,;

Figura 12{n): Evaporation Blos In DJF. Unibh W/ {m=sm}
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Figure 13: As Figure 3 but for surface latent heat flux (W mi?).
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Figure 14: As Figure 4 but for surface latent heat flux (W mi?).
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Figure 15: LEPS score of 16 AMIP2 models in simulating precipitation anomalies in the 17-yr
(1979-1995) period. The BoM observational dataset (1950 to 1999) is used in the calculation.
LEPS score in the diagram is divided by 10 with arange of —10 to 10.
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Figure 16: As Figure 15 but for Tmax.

(a) DJF

Figure 18{a); Tmax LEPS scorss In DJF.
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16(b) JUA.

Figure 18{b) Tmax LEPS soores In Jdlb



Figure 17:

(a) DJF,;

As Figure 15 but for Tmin.

Figurs 17{o)z Tmin LEFE moorsa In DWF.

59




17(b) JUA.

Figua 17(b): Tmin LEFS soores In M




Figure 18: (a): Correation of each of the 16 models LEPS scores for the simulation of
precipitation anomalies and their scores for the Smulation of surface evaporation anomalies over
the Australian continent. The heavy dashed line represents the averages of al the 16 models. The
heavy solid line represents the results from poor-man ensembles of the 16 models; (b): As (a) but
for precipitation and total soil moisture.
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Figure 19: Scatter plots of the correspondence between a single model’s scores in simulating
precipitation anomalies and surface evaporation anomalies over the Australian region. Each open
circle represents results in a single land grid point over the region. (a): DJF; (b): JJA.
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Figure 20: Three-month lag correlations between total soil moisture anomalies and surface
evaporation anomalies, with surface evaporation lagging soil moisture. The seasonal cycle has been
removed before the correlation calculations. The value of 0.14 roughly corresponds to a 95%
confidence level with 204 samples.
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Figure 21: As Figure 20 but for the correlation between total soil moisture and surface air
temperature.

Figure 21: Three—month log ceorreloifon betwesen =01l molsiure ond surface temperature.
Soll molsture leads surface temperoiure.



Figure 22:

As Figure 20 but for the auto-correlation of total soil moisture anomalies.
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Figure 23: Variation of soil moisture anomalies after removing the seasonal cycle simulated in
three models over the location 25 °S and 135 °E.
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Figure 24: (a): Area-averaged lag correlations between total soil moisture anomalies and surface
evaporation anomalies over the Australian region, with zero to twelve months lag and surface
evaporation lagging soil moisture. (b): As (&) but for soil moisture and surface air temperature.
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Figure 24: Ama—eaveraged lag comelations batwesn total 20il moistue anomalie
and suface climete enomalics. ower the Aostralian region.
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Figure 25: As Figure 24 but for auto-correlations of total soil moisture (a) and surface air
temperature (b).
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Figum 25: Ares—everaged ame correlations of totel 2oil moisturs () and surface &ir
tempemmture £ b) anomalics awerthe Amstralian egion.



